RATIONAL PONTRYAGIN CLASSES AND KILLING FORMS

ALLEN BACK

It is well known that equivariant isomorphism classes of K-vector bundles over the homogeneous space K/H are in one-to-one correspondence with equivalence classes of representations of H on the fiber V over the basepoint. Also, if the isotropy representation $\alpha\colon H\to \operatorname{Aut}(V)$ extends to a homomorphism $\overline{\alpha}\colon K\to \operatorname{Aut}(V)$, then it is easy to see that the associated equivariant bundle is trivial. The main purpose of this note is to use these observations together with the Chern-Weil theory of characteristic classes to prove the following.

Theorem 1. If the Killing form of a compact Lie group K restricts to a multiple of the Killing form of H, then the first Pontryagin class of the tangent bundle of K/H is torsion.

If H is a simple Lie group, then any two H-invariant forms are proportional. Consequently, the simplest case in which to apply Theorem 1 is:

Corollary 2. If K is compact and H is simple, then the first rational Pontryagin class of K/H is trivial.

We shall in general follow the conventions and notations of [1]. The notations \underline{K} for the Lie algebra of K, Ad_K for the adjoint action of K on \underline{K} , and ad_K for its derivative will also be used.

Since K is compact, choice of an Ad_K invariant metric on \underline{K} allows us to write $\underline{K} = \underline{H} + \underline{M}$ where \underline{M} is the orthogonal complement of \underline{H} . The representation Ad_K restricted to H leaves \underline{M} invariant, and gives rise to the tangent bundle β_1 of K/H. If we let β_2 and $\overline{\beta_3}$ be the bundles associated to Ad_H and to Ad_K restricted to H respectively, then we clearly have $\beta_3 = \beta_1 + \beta_2$ topologically.

Obviously β_3 comes from a representation extending to K, so β_3 is trivial. Consequently the first Pontryagin class of β_2 is the negative of that of β_1 .

Proof of Theorem 1. Equip β_2 and β_3 with the K-invariant canonical connections of the first kind (i.e., the vector \overline{X} induced by the element X of \underline{M}

Communicated by S. Kobayashi, December 27, 1979. Work supported in part by NSF Grant MCS 77-01623.

is horizontal at the base point). The Lie algebra valued curvature forms of β_2 and β_3 are then given by $\Omega_2(\overline{X}, \overline{Y}) = -\operatorname{ad}_H([X, Y]_H)$ and $\Omega_3(\overline{X}, \overline{Y}) = -\operatorname{ad}_K([X, Y]_H)$ respectively where $[X, Y]_H$ is the H component of [X, Y] in K = H + M.

Now the first Pontryagin form p_1 of a connection with End(V) valued curvature form Ω is given by

$$\begin{split} p_1\!\!\left(\overline{X}_1,\,\overline{X}_2,\,\overline{X}_3,\,\overline{X}_4\right) &= c \; \mathrm{Tr}_V\!\!\left[\Omega(X_1,\,X_2)\Omega(X_3,\,X_4) - \Omega(X_1,\,X_3)\Omega(X_2,\,X_4) \right. \\ &+ \Omega(X_1,\,X_4)\Omega(X_2,\,X_3) \left.\right], \end{split}$$

where c is a universal constant, and $\text{Tr}_{V}[f]$ is the trace of the element $f \in \text{End}(V)$.

For the bundle β_3 , $\operatorname{Tr}_K[\Omega_3(\overline{X}, \overline{Y})\Omega_3(\overline{Z}, \overline{W})]$ is simply $\langle [X, Y]_{\underline{H}}, [Z, W]_{\underline{H}} \rangle_K$ where \langle , \rangle_K is the Killing form of K. So for β_3 ,

$$\begin{split} p_{1}\left(\overline{X}_{1}, \, \overline{X}_{1}, \, \overline{X}_{3}, \, \overline{X}_{4}\right) &= c\Big[\left\langle \left[X_{1}, \, X_{2}\right]_{\underline{H}}, \, \left[X_{3}, \, X_{4}\right]_{\underline{H}} \right\rangle_{K} \\ &- \left\langle \left[X_{1}, \, X_{3}\right]_{\underline{H}}, \, \left[X_{2}, \, X_{4}\right]_{\underline{H}} \right\rangle_{K} \\ &+ \left\langle \left[X_{1}, \, X_{4}\right]_{\underline{H}}, \, \left[X_{2}, \, X_{3}\right]_{\underline{H}} \right\rangle_{K} \Big]. \end{split}$$

Since β_3 is trivial, this form is exact.

But the first Pontryagin form of β_2 is given by the same expression except that all K-Killing forms \langle , \rangle_K are replaced by H-Killing forms \langle , \rangle_H . So if the Killing form of K restricts to a nonzero multiple of that of H, it is immediate that $p_1(\beta_2)$ is rationally trivial. If the Killing form of K restricts to zero on H, then the semisimple part of H is trivial, and all Pontryagin classes of K/H will be zero.

It is interesting to note that the proof of Theorem 1 may also be carried out using the natural Riemannian connections on the β_i .

Other examples to which Theorem 1 applies may be readily constructed; e.g., $SU(P)/(SU(m))^n$. More generally, if H_1 and H_2 are semisimple, then any $Ad_{H_1 \times H_2}$ invariant form on $\underline{H}_1 + \underline{H}_2$ will have \underline{H}_1 and \underline{H}_2 orthogonal to each other. Consequently we have

Corollary 3. If H_1 and H_2 are simple and conjugate inside K, then $p_1(K/(H_1 \times H_2))$ will be torsion.

One might also notice that the proof of Theorem 1 immediately generalizes to higher characteristic forms. Given $A_i \in \underline{K}$ $(1 \le i \le n)$, define the "higher Killing form" $B_n(A_1, A_2, \cdots, A_n)$ to be $\mathrm{Tr}_{\underline{K}}(\mathrm{ad}_{\underline{K}}A_1 \, \mathrm{ad}_{\underline{K}}A_2 \, \cdots \, \mathrm{ad}_{\underline{K}}A_n)$ (or the symmetrized version). Then the argument of Theorem 1 will express the symmetric sum characteristic forms s_n (i.e. the image under the Chern-Weil homomorphism of the symmetric polynomial $X \to \mathrm{Tr}(X^n)$) of β_2 and β_3 in terms of the higher Killing forms of H and K respectively. Hence

Theorem 4. If the higher Killing form B_n of K restricts to a nonzero multiple of that of H, then the s_n -characteristic class of the stable normal bundle of K/H is torsion.

References

- S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. I, II, Wiley, New York, 1963, 1969.
- [2] A. Borel & F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958) 458-538.

University of Chicago